- 7. (a) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then prove that $\nabla \cdot (r^n \vec{r}) = n(n+3)r^n.$
 - (b) Find the directional derivative of the function $f(x) = x^2 y^2 + 2z^2$ at the point P (1, 2, 3) in the direction of the line PQ, where Q is the point (5, 0, 4).
- 8. (a) Using Stoke's theorem, evaluate $\int_{C} ((2x-y)dx yz^{2}dy y^{2}z dz), \text{ where C is the circle } x^{2} + y^{2} = 1, \text{ corresponding to the surface of the sphere of unit radius.}$
 - (b) Use Green's theorem in the plane for $\oint_C (3x^2 8y^2) dx + (4y 6xy) dy, \text{ where C is}$ the boundary of the region defined by $y = \sqrt{x}$, $y = x^2.$

(Compulsory Question)

- 9. Attempt all parts of this question: 2×10=20
 - (a) Sum of eigen values of matrix is

July-22-00207

B. Tech. EXAMINATION, 2022

Semester I (CBCS)

ENGINEERING MATHEMATICS-I (A & B)

MA-101

Time: 3 Hours

Maximum Marks: 60

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one question from each Section A, B, C and D. Q. No. 9 is compulsory.

Section A

1. (a) Find the values of a and b for which the equations x + ay + z = 3, x + 2y + 2z = b, x + 5y + 3z = 9 are consistent. When will these equations have a unique solution?

5 (6-10/19)W-July-22-00207

P.T.O.

W-July-22-00207

4

(b) Find the eigen values and eigen vectors of the

matrix
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
.

2. Find the characteristic equation of the matrix

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$
. Show that the equation is satisfied

by A and hence obtain the inverse of given matrix. 10

Section B

- 3. (a) Prove that $\tan\left(i\log\left(\frac{a-ib}{a+ib}\right)\right) = \frac{2ab}{a^2-b^2}$.
 - (b) Solve the equation : $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = 0 \quad \text{by complex}$ root method.
- 4. (a) Sum the series to infinity

$$\sin \alpha + x \sin (\alpha + \beta) + \frac{x^2}{2!} \sin (\alpha + 2\beta) + \dots$$
 5

(b) If $\tan(\theta + i\phi) = \cos \alpha + i \sin \alpha = e^{i\alpha}$, prove that:

$$\theta = \frac{n\pi}{2} + \frac{\pi}{4}$$
 and $\phi = \frac{1}{2} \log \tan \left(\frac{\pi}{4} + \frac{\alpha}{2} \right)$.

Section C

- 5. (a) Examine for maximum and minimum values of $\sin x + \sin y + \sin(x + y)$. 5
 - (b) If u is a homogenous function of degree n in x and y, then prove that:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u.$$

6. (a) Define Gamma function. Also find the value of

$$\Gamma\left(\frac{1}{2}\right)$$
. 5

(b) Evaluate $\iint_{\mathbb{R}} e^{2x+3y} dxdy$ over the triangle

bounded by x = 0, y = 0 and x + y = 1. 5

- (b) Prove that the inverse of an orthogonal matrix is orthogonal.
- (c) Define rank of a matrix with one example.
- (d) Find the general value of $\log(1+i)$, where $i = \sqrt{-1}$.
- (e) Separate real and imaginary parts of $\cos(x+iy)$.
- (f) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then prove that $div \vec{r} = 3$.
- (g) Define homogenous function. Write the statement of Euler's theorem on homogenous function of first order.
- (h) Find first order partial derivative of $u = \tan^{-1} \left(\frac{x^2 + y^2}{x + y} \right).$
- (i) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then show that $\operatorname{grad}\left(\frac{1}{r}\right) = -\frac{r}{r^3}$.
- (j) Evaluate $\iint_{S} \vec{r} \cdot \hat{n} ds$, where S is a closed surface.